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Abstract:  23 

The interaction between vegetation and soil erosion is a core problem in 24 

ecohydrological research. Although the effects of vegetation on soil erosion have been 25 

widely studied, the stochasticity of soil erosion in restoration vegetation types in water-26 

limited environment is less investigated. Based on monitoring soil erosion over five 27 

rainy seasons, we employed probabilistic-trait analysis framework (OCIRS-Bayes) to 28 

assess the stochasticity of runoff and sediment generation in three typical restoration 29 

vegetation types (Armeniaca sibirica (T1), Spiraea pubescens (T2) and Artemisia 30 

copria (T3)) in the Loess Plateau of China, and applied binomial and Poisson 31 

distribution functions to predict the probability distribution of erosion random events. 32 

The results indicated that, in OCIRS-Bayes system, 130 rainfall events were subdivided 33 

into four types. Two types with relative high average precipitation (27.6 and 69.0 mm 34 

respectively) could cause larger probability of soil erosion in all vegetation types than 35 

other type with average precipitation being 5.0 mm. Under the same rainfall condition, 36 

T1 with largest crown structure have lowest average probability of runoff (23.1 %) and 37 

sediment (10 %) generation; T2 with thicker litter layer and denser root system have 38 

moderate runoff (34.6 %) and sediment (14.6 %) occurrence probability; the probability 39 

of runoff (34.6 %) and sediment (25.4 %) generating in T3 were relative higher. The 40 

probability distribution of numbers of times soil erosion events in all restoration 41 

vegetation could be well predicted by binominal and Poisson probabilistic models, 42 

however, parameter analysis implied that Poisson model is more suitable for predicting 43 

stochasticity of soil erosion over larger temporal scale. This study could be meaningful 44 
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to apply more effectively restoration on protecting the soil and water resources in the 45 

water-limited environment. 46 

 47 

Key words: stochasticity, restoration vegetation, soil erosion, Poisson distribution,  48 

 49 

1. Introduction  50 

The climate change and anthropogenic activities accelerate soil erosion triggering soil 51 

deterioration, and degrading terrestrial ecosystem over worldwide (Marques et al., 52 

2008;Portenga and Bierman, 2011). The stochasticity of soil erosion reflects the effect 53 

of environmental elements such as stochastic rainfall on the erosive variability (Kim. J 54 

et al., 2016). As one of important environment factors, vegetation plays an important 55 

role on disturbing the impact of rainfall on soil erosion. The interaction between plant 56 

and erosion processes is still a research frontier in ecohydrology (Ludwig et al., 57 

2005;Rodríguez-Iturbe et al., 2001). Actually, how plant affect the stochasticity of soil 58 

erosion implies the risk of erosion generation in complex natural conditions. Exploring 59 

the effect is meaningful to assessing the efficacy of soil control practices as well as 60 

corresponding ecosystem service in semi-arid regions (Fu et al., 2011). 61 

The stochasticity approach based on probability theory is a crucial tool to describe 62 

the random phenomenon and their ecohydrologic effects in natural condition. 63 

Precipitation is one of most important source of environmental stochasticity to directly 64 

affect the uncertainty of soil erosion. As early as 1978, Eagleson, (1978) applied 65 

probabilistic-trait methods to simplify the randomness of rainfall event. He predicted 66 
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the distribution of annual precipitation from observed storm sequences by Poisson and 67 

Gamma probability distribution functions. Due to the obvious disturbance of rainfall 68 

events on environment, especially on the water-limited condition, many hydrological 69 

responses which are closely related to rainfall has also expressed different randomness, 70 

and indicated by various probabilistic models. For instance, Verma et al, (2011) applied 71 

probabilistic methods to assess the influence of daily precipitation distribution on 72 

dynamic of soil moisture. Rodriguez-Iturbe et al, (1999) described the dynamics of soil 73 

moisture by probability distribution functions depending on water balance at point scale. 74 

Wang and Tartakovsky, (2011) employed probability density function to reduce the 75 

complexity of infiltration rate in heterogeneous soils. Additionally, the susceptibility of 76 

some disasters trigged by some extreme rainfall events—such as flood (Mouri et al., 77 

2013), slope instability (Li et al., 2014), and landslide (Ya and Chi, 2011)—have also 78 

assessed by probabilistic models. 79 

As to the soil erosion which is typical hydrological response of soil to rainfall, Moore, 80 

(2007) predicted runoff production through probability models of soil storage capacity, 81 

and Sidorchuk, (2005, 2009) combined the probabilistic and deterministic soil erosion 82 

components to analyze the stochasticity of interaction between soil structure and 83 

overflow during erosion process. These probabilistic-trait approaches closely related to 84 

the theory of water balance and some typical hydrological assumptions. This optimized 85 

the hydrological models to more precisely represent the randomness of hydrological 86 

responses, which could more effectively describe complex hydrological processes 87 

(Bhunya et al., 2007). However, under the framework of probability theory, there are 88 
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still few studies to explore the probabilistic method to analyze the stochasticity of soil 89 

erosion. Especially, little effort has been made to systematically investigate how the 90 

signal of stochastic rainfall is transmitted to soil erosion in different restoration 91 

vegetation types based on observational data rather than on other model assumptions. 92 

In fact, this investigation deriving from specific experiment results probably have more 93 

practical meaning for understanding the stochastic interaction between rainfall and 94 

erosion. 95 

Morphological structures of plant including canopy structure, root system, and litter 96 

layer formation were endowed with controlling-erosion functions (Gartner, 2007;Jost 97 

et al., 2012;Wang et al., 2012;Woods and Balfour, 2010). Due to these function, 98 

vegetation acts as an important role on reinfiltrating overland flow, storing runon and 99 

restructuring sediment fluxes (Ludwig et al., 2005;Moreno-de las Heras et al., 2010). 100 

This significantly restricts the capacity of surface flow for delivering erosive particle 101 

out of a soil-plant system during rainfall processes (Bautista et al., 2007;Puigdefábregas, 102 

2005). How vegetation affects soil erosion was also further interpreted and predicted 103 

by some conceptual and empirical models (Kumar and Kushwaha, 2013;Mallick et al., 104 

2014;Prasannakumar et al., 2011). Both of vegetation-driven-spatial-heterogeneity 105 

(VDSH) (Bautista et al., 2007) and trigger-transfer-reserve-pulse (TTRP) (Ludwig et 106 

al., 2005) conceptual frameworks have stressed the driving role of vegetation on 107 

controlling erosion. Wischmeier and Smith, (1978) defined the land use conditions as a 108 

factor in universal soil loss equation (USLE) to imply the importance of vegetation on 109 

predicting erosion module. However, the effect of vegetation on stochasticity of soil 110 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-386, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 1 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 
 

erosion was less studied. Theoretically, soil erosion generation triggered by the 111 

stochastic precipitation, indispensably expressed the randomness. This ubiquitous 112 

property in hydrological processes could also be affected by the hydrological function 113 

of plant. Therefore, the application of stochasticity method on analyzing the interaction 114 

between plant and soil erosion, could be meaningful to understand the mechanism of 115 

erosion generation as well as to improve the accuracy of prediction.  116 

In this study, we monitored soil erosion in three typical restoration vegetation types 117 

over five years’ rainy seasons in the Loess Plateau of China, and aim to (1) construct 118 

assessment frameworks to characterize the random events in stochastic environment, 119 

(2) investigate how the stochastic signal of rainfall transmit into soil erosion in different 120 

restoration vegetation types; and (3) assess the effect of probability modellings on 121 

predicting the stochasticity of soil erosion in vegetation types. By exploring the 122 

stochastic property of soil erosion from more comprehensive and objective aspects, this 123 

study could enrich the methodology of sensitivity analysis of soil erosion, and probably 124 

be meaningful for the selection of reasonable restoration vegetation for conserving the 125 

soil and water resources in the Loess Plateau, China. 126 

 127 

2. Materials and methods  128 

2.1  Study region description  129 

The study was implemented in the Yangjuangou Catchment (36º42'N, 109º31'E, 2.02 130 

km2) which is located in the typical hilly-gully region of the Loess Plateau in China 131 

(Figure 1a). A semi-arid climate in this area is mainly affected by the North China 132 
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monsoon. Annual average precipitation reaches approximately 533 mm, and the rainy 133 

season here spans from June to September (Liu et al., 2012). When the rainy season 134 

comes, some high-intensity precipitation more easily cause soil erosion as the Calcaric 135 

Cambisol (FAO-UNESCO, 1974) soil type has relative higher potential erodibility. Soil 136 

erosion was one of most environmental hazard and cause the ecosystem degradation in 137 

the Loess Plateau before 1980s (Wang et al., 2015). And after 1998, as a crucial soil 138 

and water resource protection project, the Grain-for-Green Project was widely 139 

implemented in the Loess Plateau. A large number of steeply sloped croplands were 140 

abandoned, restored or natural recovered by shrub and herbaceous plants(Cao et al., 141 

2009;Jiao et al., 1999). And in the Yangjuangou Catchment, the main restoration 142 

vegetation distributed on hillslopes includes Robinia. pseudoacacia Linn, Lespedeza 143 

davurica, Aspicilia fruticosa, Armeniaca sibirica, Spiraea pubescens, and Artemisia 144 

copria, etc. All the restoration vegetation was planted over 20 years ago. 145 

 146 

2.2  Experimental design and measurement 147 

In the Yangjuangou Catchment, systematic long-term field monitoring experiments 148 

were conducted. We have mainly concentrated on the runoff production and sediment 149 

yield in designed runoff plots (Liu et al., 2012;Zhou et al., 2016), dynamic of soil 150 

moisture in different restoration vegetation (Wang et al., 2013;Zhou et al., 2015), and 151 

the ecosystem service assessment in the typical water-restricted environment (Fu et al., 152 

2011). In this study, we monitored the soil erosion in three typical restoration vegetation 153 

(Armeniaca sibirica (T1), Spiraea pubescens (T2) and Artemisia copria (T3)) over five 154 
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years’ rainy seasons from 2008 to 2012 (figure 1b). Each restoration vegetation type 155 

was designed in three 3 m by 10 m closed runoff-plot all of which were distributed on 156 

southwest facing hillslopes with a 26.8% aspect. The boundaries of each runoff-plot 157 

were perpendicularly fenced by impervious polyvinylchloride (PVC) sheet with 50 cm 158 

depth. And a collection trough and storage bucket was installed at the bottom boundary 159 

to compose the collection-transmission system of runoff and sediment (Zhou et al., 160 

2016). Two tipping bucket rain gauges were installed outside of runoff-plot to 161 

automatically record the precipitation with accuracy of 0.2mm. We counted the number 162 

of times of runoff and sediment generation in each runoff-plot based on natural 163 

precipitation stochastically generating in the experiment area over five rainy seasons. 164 

Meanwhile, we stored runoff and sediment in collection-transmission system, separated 165 

them after settling the collecting bottles for 24 hours, dried at 105℃over 8 hours and 166 

weighted. We further measured the field saturated hydraulic conductivity in three 167 

restoration vegetation types by Model 2800 K1 Guelph Permeameter (figure 1c) 168 

(Soilmoisture Equipment Corp,. Santa Barbara, CA, USA) to determine the infiltration 169 

capability of soil matrix. And visually estimated the restoration vegetation cover by 170 

thirty 1 m2 quadrats distributed over each runoff-plot for 2-3 times over different 171 

periods of rainy season (figure 1d). At last, we measured the average height, crown 172 

width, leaf area index, and the thickness of litter layer in T1 to T3 (Bonham, 1989). 173 

More information was showed in table 1   174 

Figure 1 175 

Table 1 176 
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2.3  Analysis framework for erosion stochasticity   177 

2.3.1 Construction of random events system  178 

Each observed stochastic weather condition is defined as a random experiment. All the 179 

possible outcomes of a random experiment constitute a sample space (Ω) defined as 180 

observation random event (short for O event, the same as follow). O event is subdivided 181 

into two mutually exclusive random event types, one is rainfall random event (I event) 182 

and the other is non-rainfall random event (C event). Precipitation is a necessary 183 

condition of runoff production, therefore, the runoff production random event (R event) 184 

is a subset of I event. Similarly, R event is also a necessary condition of sediment 185 

migration random event (S event). As a result, S event is contained in R event. Above 186 

defined O, C, I, R, and S events could be regarded as five different elements constituting 187 

the OCIRS random events system which is a basic framework for quantifying 188 

environment stochasticity.  189 

Precipitation is a crucial disturbance environmental factor to transmit their stochastic 190 

signals into the R and S events. Therefore, it is necessary to investigate and classify the 191 

characteristics of all I events. Firstly, the time interval between two adjacent individual 192 

I events is set to be more than 6 hours, which is a criteria for the classification of 193 

individual I event according to its duration. And secondly, considering the typical 194 

rainfall eigenvalues including precipitation, intensity and duration as well as the main 195 

rainfall patterns in the Loess Plateau (Wei et al., 2007), we used Ward’s method of 196 

hierarchical cluster analysis to classify 130 individual I events into four types (figure 197 

2c). They are IA events with lowest average precipitation and intensity; IB events with 198 
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second largest average precipitation and intensity; IC events whose average 199 

precipitation and duration are largest; and ID event which was an individual extreme 200 

rainfall event. Table 2 summarizes the physical and probabilistic properties all the 201 

elements in OCIRS system. Finally, the whole confirming process of all elements in 202 

OCIRS system is sketched by figure 2a, and Venn diagrams in figure 2b explored the 203 

relationships of all elements in OCIRS. In fact, various combinations of I and C events 204 

formed different random event sequences which finally constituted the whole field 205 

monitoring period. 206 

 207 

Figure 2 208 

Table 2 209 

 210 

2.3.2 Quantification of erosion stochasticity   211 

In the sample space Ω, for each random event E which could be regarded as any 212 

elements of OCIRS system, we define P(E) as the proportion of time that E occurs in 213 

terms of relative frequency:  214 

𝑃(𝐸) = 𝑙𝑖𝑚
𝑛→∞

𝑛(𝐸)

𝑛
= 𝑝𝐸                                                                                                           (1) 215 

Theoretically, 𝑛(𝐸) is the number of times in n outcomes of observed random 216 

experiment that the event E occurs, and 𝑝𝐸 ∈ [0,1]. Let Im, m=1, 2, 3 and 4 be the IA, 217 

IB, IC, and ID which are mutually exclusive random event types composing I event. 218 

According to the law of total probability, the probability of R event P(R) is defined as 219 

follow: 220 
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𝑃(𝑅) = 𝑃(𝑅𝐼) = 𝑃(𝑅|⋃ 𝐼𝑚
4
𝑚=1 )𝑃(⋃ 𝐼𝑚

4
𝑚=1 ) = ∑ 𝑃(𝑅|𝐼𝑚)𝑃(𝐼𝑚)

4
𝑚=1 = 𝑝𝑅           (2)  221 

And 𝑃(𝑅|𝐼𝑚) is conditional probability that R event occur given that mth I event type 222 

has occurred. Similarly, the probability of S event P(S) are showed as follow:  223 

𝑃(𝑆) = 𝑃(𝑆𝐼) = 𝑃(𝑆|⋃ 𝐼𝑚
4
𝑚=1 )𝑃(⋃ 𝐼𝑚

4
𝑚=1 ) = ∑ 𝑃(𝑆|𝐼𝑚)𝑃(𝐼𝑚)

4
𝑚=1 = 𝑝𝑆              (3)  224 

Equation (2) and (3) quantify the effect of stochastic signal of rainfall on soil erosion. 225 

On the other hand, supposing an R or S event has occurred stochastically, based on 226 

Bayes formula, we furtherly deduces two equations as follow: 227 

𝑃(𝐼𝑘|𝑅) =
𝑃(𝐼𝑘𝑅)

𝑃(𝑅)
=

𝑃(𝑅|𝐼𝑘)𝑃(𝐼𝑘)

∑ 𝑃(𝑅|𝐼𝑚)𝑃(𝐼𝑚)
4
𝑚=1

                                                                       (4) 228 

and  229 

𝑃(𝐼𝑘|𝑅) =
𝑃(𝐼𝑘𝑅)

𝑃(𝑅)
=

𝑃(𝑅|𝐼𝑘)𝑃(𝐼𝑘)

∑ 𝑃(𝑅|𝐼𝑚)𝑃(𝐼𝑚)
4
𝑚=1

                                                                       (5) 230 

Equation (4) and (5) quantify how much the contributions of kth type of I event on a R 231 

or S event stochastically generating at month or seasonal scale, which reflect the 232 

feedback of soil erosion to rainfall stochasticity. Equation (2)~(5) characterize the 233 

interaction of rainfall and erosion by means of probability theory and expression. 234 

Consequently, we designs the OCIRS-Bayes framework combining OCIRS system 235 

with Bayes method. It systematically describe the stochasticity of soil erosion in 236 

different restoration vegetation types through the monitoring experiment, which 237 

indicates the interaction of rainfall and soil erosion. 238 

We defined X, Y as two discrete random variables which are real-valued functions 239 

defined on the sample space Ω. Let X, Y denote the numbers of times of R and S events 240 

occurrence respectively. And let another random variable Z assign the sample space Ω 241 

to z. 𝑋(𝑅) = 𝑥, 𝑌(𝑆) = 𝑦, 𝑍(Ω) = 𝑘, 𝑦 ≤ 𝑥 ≤ 𝑧.  x, y, k are integers. The ranges of X 242 
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and Y are 𝑅𝑋 = {𝑎𝑙𝑙 𝑥: 𝑥 = 𝑋(𝑅), 𝑎𝑙𝑙 𝑅 ∈ Ω} and 𝑅𝑌 = {𝑎𝑙𝑙 𝑦: 𝑦 = 𝑌(𝑆), 𝑎𝑙𝑙 𝑆 ∈ Ω}. 243 

The probability of 𝑥𝑖  or 𝑦𝑗  times of R or S events could be quantified by the 244 

probability mass function (PMF) as follow:   245 

𝑝𝑚𝑓𝑋(𝑥𝑖) = 𝑃[{𝑅𝑖: 𝑋(𝑅𝑖) = 𝑥𝑖,   𝑥𝑖 ∈ 𝑅𝑋}]                                                                       (6)  246 

𝑝𝑚𝑓𝑌(𝑦𝑗) = 𝑃[{𝑆𝑗: 𝑌(𝑆𝑗) = 𝑦𝑗 ,   𝑦𝑗 ∈ 𝑅𝑌}]  for 𝑖 ≥ 𝑗                                                      (7) 247 

PMF in equation (6), (7) describe the general expression of probability distribution of 248 

all possible numbers of times of R or S events. 249 

Actually, according to the property of Bernoulli experiment (Robert et al., 2013), the 250 

random variables X, Y obey binominal distribution. The PMF of X, and Y were defined 251 

as follow: 252 

𝑝𝑚𝑓𝑋𝑏𝑖𝑛(𝑥) = 𝑃𝑋𝑏𝑖𝑛(𝑋 = 𝑥) = {   
(
𝑛

𝑥
) 𝑝𝑅

𝑥(1 − 𝑝𝑅)
𝑛−𝑥      𝑥 = 0,1,2, … , 𝑛

0                             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
               (8) 253 

and  254 

𝑝𝑚𝑓𝑌𝑏𝑖𝑛(𝑦) = 𝑃𝑦𝑏𝑖𝑛(𝑌 = 𝑦) = {   
(
𝑛

𝑦
) 𝑝𝑆

𝑦(1 − 𝑝𝑆)
𝑛−𝑦      𝑦 = 0,1,2,… , 𝑛

0                             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                (9) 255 

And the expectation and variance of X and Y are equation (10) and (11): 256 

𝐸𝑋𝑏𝑖𝑛[𝑋] = 𝑛𝑝𝑅 , 𝑉𝑋𝑏𝑖𝑛[𝑋] = 𝑛𝑝𝑅(1 − 𝑝𝑅)                                                                     (10)  257 

𝐸𝑌𝑏𝑖𝑛[𝑌] = 𝑛𝑝𝑆, 𝑉𝑌𝑏𝑖𝑛[𝑌] = 𝑛𝑝𝑆(1 − 𝑝𝑆)                                                                       (11)  258 

where x and y indicate all possible numbers of times of R and S occurring over n 259 

independent I events which are also characterized as n Bernoulli experiments. However, 260 

when the Bernoulli experiment is performed infinite independent times (n→∞), the 261 

binomial PMF can be transformed into Poisson PMF, which is proved by appendix A. 262 

Therefore, equation (8) and (9) can be transformed as follow: 263 
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𝑝𝑚𝑓𝑋𝑝𝑜𝑖(𝑥) = 𝑃𝑋𝑝𝑜𝑖(𝑋 = 𝑥) = {    
𝜆𝑅
𝑥𝑒−𝜆𝑅

𝑥!
          𝑥 = 0,1,2, …

 0                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                   (12) 264 

and  265 

𝑝𝑚𝑓𝑌𝑝𝑜𝑖(𝑦) = 𝑃𝑌𝑝𝑜𝑖(𝑌 = 𝑦) = {   
𝜆𝑆
𝑦
𝑒−𝜆𝑆

𝑦!
          𝑦 = 0,1,2, …

 0                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                    (13) 266 

And expectation and variance of X and Y are : 267 

𝐸𝑋𝑝𝑜𝑖[𝑋] = 𝑉𝑋𝑝𝑜𝑖[𝑋] = 𝜆𝑅                                                                                                   (14) 268 

𝐸𝑌𝑝𝑜𝑖[𝑌] = 𝑉𝑌𝑝𝑜𝑖[𝑌] = 𝜆𝑆                                                                                                    (15) 269 

where the parameter 𝜆𝑅 ≈ 𝑛𝑝𝑅 , 𝜆𝑆 ≈ 𝑛𝑝𝑆. As a result, equation (8)~(11) reflect two 270 

PMF models to construct the prediction system of stochasticity of soil erosion.  271 

 272 

2.4  Statistics 273 

We employed nonparametric statistical tests—one-way ANOVA and post hoc LSD—274 

to determine the significant difference of soil, vegetation and erosive properties in the 275 

three restoration vegetation types, and took Spearman’s rank correlation coefficients to 276 

analyze how the vegetation coverage affect the probability of soil erosion generation 277 

under three grouped precipitation types. At last, the maximum likelihood estimator 278 

(MLE) and uniformly minimum variance unbiased estimator (UMVUE) (Robert et al., 279 

2013) were explored to compare the suitability of the binomial PMF and Poisson PMF 280 

for predicting the uncertainty of runoff and sediment generation over long term. 281 

 282 

 283 

 284 
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3. Results  285 

3.1  Stochasticity of classified rainfall 286 

The stochasticity of I event in OCIRS system is a direct source of randomness of soil 287 

erosion. According to cluster analysis, all I events were classified into four categories 288 

including IA, IB, IC and ID (figure 2c). Firstly, IA type was characterized as lowest 289 

average precipitation (5 mm), intensity (0.015 mm/min) and duration (365 minutes) in 290 

the four categories types. The proportion of IA to all I events reaches to 72% with its 291 

higher reoccurrence in each rainy seasons (figure 3). Especially, in 2010, nearly 90% 292 

of I events was IA. However, due to its small rainfall erosivity, the times of R and S 293 

events occurring in three vegetation restoration types was lowest under IA condition 294 

(table 3). Secondly, characterized as high average rainfall intensity (0.072 mm/min), IB 295 

event has the second higher occurrence probability in each rainy season (figure 3). Even 296 

in 2008, the proportion of IB to all I events (50%) was larger than that of IA (33%). 297 

Although the average probability of IB event occurrence approximated to 5% in all O 298 

events of five rainy seasons, IB can more easily lead to soil erosion in three restoration 299 

vegetation types. Especially, when each IB event occurred stochastically in five rainy 300 

seasons, then it would nearly trigger R event in type 2 and 3 restoration vegetation 301 

(table 3). Thirdly, the probability of IC event with highest average precipitation (69 mm) 302 

occurring in each rainy season is 1% in all O events of five rainy seasons. In the rainy 303 

season of 2010, there was even no IC occurrence. However, if each IC event 304 

stochastically generated in rainy seasons, the R event would occurred in all restoration 305 

vegetation types. On July, 2008, there was a specific I event with extreme high rainfall 306 
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intensity (0.78 mm/min) which was classified ID event. ID event was very rare, because 307 

it was observed one times over five rainy seasons. Under this precipitation condition, 308 

soil erosion generated in all restoration vegetation types. 309 

 310 

Figure 3 311 

Table 3 312 

 313 

3.2  Stochasticity of soil erosion in vegetation types 314 

Based on OCIRS system, the stochasticity of soil erosion in three restoration vegetation 315 

types (T1, T2 and T3) at month and seasonal scales is described by figure 4. At early 316 

period of erosion monitoring, the stochasticity of soil erosion in all restoration 317 

vegetation types is similar, with probability of R and S event generation ranging from 318 

6% to 13% and from 3% to 13% respectively. From rainy season of 2009 to 2011, the 319 

highest probabilities of soil erosion in each vegetation type all appeared in the middle 320 

of rainy season (July and August). However, these probabilities were observed to be 321 

different extents of decrease with the increasing of experiment period. As to runoff 322 

production, the probability of R event generation in T1 was generally less than that of 323 

T2 and T3 under same precipitation condition, with it being less than 7% in the last four 324 

rainy seasons. The randomness of R events occurring in T2 and T3 have similar 325 

distribution in each month of rainy season. With respect to sediment yield, the 326 

probability reduction of S event generating in T1 was more obvious than that of other 327 

types, with it being only less than 3% in the last four rainy seasons. Especially, in the 328 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-386, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 1 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



16 
 

rainy season of 2011 and 2012, there was no S event occurrence in T1, however, the 329 

corresponding average probability of S event in T2 and T3 was near 1.5% and 4% 330 

respectively. Generally, influenced by the same stochastic signal of I events, T1 and T3 331 

have the lowest and highest probability of soil erosion respectively.   332 

According to the Bayes formula, figure 5 indicated that given one R or S event has 333 

stochastically generated in some restoration vegetation type at specific month or rainy 334 

season, how much the probabilistic contribution of different types of I events on the 335 

corresponding soil erosion occurrence. In the rainy season of 2008, as to all restoration 336 

vegetation types, the contributing types of I events on soil erosion was more complex 337 

than other rainy seasons, but also concentrated on relative high precipitation and 338 

intensity classified I events such as IB, IC events. With the increasing of experiment 339 

duration from 2009 to 2011, the complexity seemed to be reduced, and the probabilistic 340 

contribution of IA event on soil erosion have different extent increase in three 341 

restoration vegetation types. If one R event has stochastically occurred in T1, the 342 

probabilistic contribution on this runoff production were generally IB and IC events, 343 

which they ranged from about 50% to 100% and near 20% to100% respectively. And 344 

IA and IB events have even no probabilistic contribution on one S event occurring on 345 

T1 stochastically over the last four rainy seasons. However, IA and IB events have been 346 

the main probabilistic contributors for one statistical soil erosion generation on T2 and 347 

T3, which they ranged from about 10% to 100% and 30% to 100% respectively. 348 

Consequently, the contribution pattern of I events on soil erosion in T1 was relative 349 

simple and mainly focused on I events type with higher rainfall erosivity than that of in 350 
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T2 and T3.  351 

 352 

Figure 4 353 

Figure 5 354 

 355 

3.3 Prediction of soil erosion stochasticity  356 

We defined ten consecutive stochastic I events as an stochastic environment unit of the 357 

background of soil erosion, which indicates that n =10 in the binomial and Poisson 358 

distribution functions (equation (8~9, 12~13)). Under this assumption, figure 6 359 

describes binomial and Poisson PMFs to predict the probability distributions of 360 

numbers of times of soil erosion events in three restoration vegetation types. It also 361 

compares the predictions with the frequencies of numbers of times of observed R and 362 

S event in vegetation types. Firstly, as to the probability distribution of R event, it seems 363 

that the binomial and Poisson PMFs provide a better fit to the observation in T1 than 364 

that of in T2 and T3. More specifically, in all restoration vegetation types, binomial 365 

PMFs supply better fit to the observed numbers of time of R events with larger 366 

frequency (such as 2~4 time) than that of Poisson PMFs. However, Poisson PMFs fit 367 

the observed numbers of time of R events with the lower frequency (such as 6~8 times) 368 

better than that of binomial PMFs. The frequencies of observed numbers of time of R 369 

events in T2 and T3 have similar distribution patterns. Secondly, with respect to 370 

probability distribution of S event, the predictions about the observed probability 371 

distribution of S events in T1 by both PMFs do not fit very well. Especially, when the 372 
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frequency of number of times of no-sediment in T1 is nearly two times larger than the 373 

corresponding predication of binomial and Poisson PMFs. However, the two PMFs are 374 

seemed to provide better fit to the observation in T3 and T2 than that of in T1. With the 375 

restoration vegetation types changing from T1 to T3 in figure 6, the predicted or 376 

observed numbers of time of R events with largest probability or frequency increased 377 

in consistence. Generally, Poisson PMF seems to provide better probability distribution 378 

prediction about observed numbers of times of R events in all restoration vegetation 379 

types than that of Binomial PMF.  380 

 381 

Figure 6 382 

 383 

4. Discussion  384 

4.1  OCIRS-Bayes framework for erosion stochasticity 385 

The OCIRS designing and Bayes method in this paper constitute an innovative analysis 386 

framework for soil erosion study. Environmental stochasticity is an inevitable factors 387 

to affect the variability of soil erosion, which is also a non-negligible obstacle for the 388 

understanding of soil erosion and its modelling prediction (Kim. J et al., 2016). OCIRS-389 

Bayes framework formed a random event system to evaluate the stochasticity of 390 

environment, but also analyze the transmission of stochastic signal of rainfall into soil 391 

erosion. In this framework, the stochastic weather conditions were defined as a series 392 

random events with various physical and probabilistic meanings, which have direct or 393 

indirect relevance to stochasticity of soil erosion (table 2). There also exist many 394 
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modelling systems to evaluate the effect of influencing factors on soil erosion, and 395 

universal soil loss equation (USLE) is a typical one which models intensity of 396 

influencing factors to be predicted the erosion module by empirical formula 397 

(Wischmeier and Smith, 1978). But, there are less analysis frameworks like OCIRS-398 

Bayes to model the stochasticity of soil erosion and its influencing factors totally 399 

depending on the long-term experimental data and fundamental probability theories. In 400 

order to stressed that the stochastic signals of rainfall events are the most important 401 

disturbances and sources of uncertainty and variability of soil erosion, OCIRS-Bayes 402 

further subdivides all rainfall events into various subsets (from IA to ID event) 403 

representing different rainfall erosivities which was similar with the typical rainfall 404 

patterns in rainy seasons of the Loess Plateau (Wei et al., 2007). Therefore, OCIRS-405 

Bayes become a more practicable and simplification system to supplement to the 406 

studies on evaluating effect of rainfall properties on soil erosion in semi-arid 407 

environment.  408 

In this study, OCIRS-Bayes framework discovered that the probability of soil erosion 409 

is closely related to the complexity of rainfall event types distributing in rainy season, 410 

which affected by the transmission of stochastic signals of high-erosivity rainfall events 411 

(such as IC and ID). This systematically analyzed how the stochastic signals of different 412 

rainfall events transmits to the soil erosion in restoration vegetation types in the water-413 

limited natural condition at different temporal scales (showed in figure 4). Meanwhile, 414 

this framework also explored that the only relative high-erosivity rainfall events can 415 

make a contribution for the stochastically soil erosion generating in T1, which implied 416 
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the feedback of rainfall properties to stochasticity of soil erosion. Therefore, the 417 

interactive relationship between rainfall and soil erosion under restoration vegetation 418 

condition was characterized by OCIRS-Bayes framework. This supplies a new and 419 

meaningful aspect to understanding the soil erosion properties especially under the 420 

background of climate change transmitting more stochastic and extreme environmental 421 

signals into soil-plant system.  422 

 423 

4.2  Disturbances of vegetation on erosion stochasticity  424 

The different stochasticity of soil erosion in three restoration vegetation types reflects 425 

the different extents of disturbance of vegetation types on the transmission of stochastic 426 

signals of rainfall into soil-plant systems. These disturbances is closely related to the 427 

variety of morphological structure with complex ecohydrological functions affecting 428 

the whole process of runoff production and sediment yield (Jost et al., 2012; Wang et 429 

al., 2012; Woods and Balfour, 2010). Specifically, the morphological structures 430 

including canopy, litter layer and root distribution could have obvious hydrological 431 

function to control soil erosion. Firstly, the largest crown diameters of T1 could have 432 

stronger interception capacity than that of T2 and T3. Because many studies have 433 

proved that canopy structure could have specific capacities for precipitation retention, 434 

and prevent rainfall from directly forming overland flow or splashing soil surface 435 

particles (Liu, 2001;Mohammad and Adam, 2010;Morgan, 2001), For this reason, the 436 

canopy structure of T1 could have stronger capacity to reduce the transmission of 437 

stochastic signal of amount and energy of rainfall directly on soil surface, which finally 438 
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attributed to the relative lower probability of R and S event in T1. This could also 439 

probable explained the decreased vegetation coverage significantly correlated with the 440 

increased probability of S event in table 4.  441 

Secondly, there was abundant litter material covering on the soil surface of T2 (figure 442 

7), which formed a significant largest average thickness of the litter layer. Many studies 443 

also proved that litter layer structure acts multiple roles on conserving the rainfall, 444 

improving infiltration of throughfall, as well as cushioning the splashing of raindrop 445 

(Gyssels et al., 2005;Johns, 1983;Munoz-Robles et al., 2011;Geißler et al., 2012). For 446 

these reasons, the litter layer structure of T2 also have stronger disturbance on the 447 

transmission of stochastic signals of rainfall through improving the throughfall 448 

absorption to reduce the probability of R event as well as inhibiting the splash or sheet 449 

erosion occurrence. 450 

The distribution of root system could be the third important morphological structure 451 

to disturb the stochastic signal of rainfall transmitting on soil-plant system. More 452 

macropores formed by root system of vegetation types distributing in the soil matrix 453 

was proved to improve the reinfiltration of the overland (Gyssels et al., 2005). The 454 

reinfiltration process is an important way to recharge soil water stores when the 455 

overland flow occurred in hillslopes, but also an indispensable contributing factor to 456 

reduce the unit area runoff (Moreno-de las Heras et al., 2009;Moreno-de las Heras et 457 

al., 2010). Consequently, showed in figure 7, denser root system distributing the 458 

underground of T2 could create more macropores in the subsurface than that of T1 and 459 

T3. It reduce the transmission of stochastic signal of rainfall by means of supplying 460 
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more opportunity to reinfiltrate the potential overland flow into a deep soil layer, and 461 

finally decreased the probability of soil erosion in T2. 462 

The interactions between plant and soil erosion in semi-arid environment is a 463 

complex ecohydrological processes (Ludwig et al., 2005), which also reflects in the 464 

complexity of stochasticity of soil erosion in different restoration vegetation types. 465 

However, due to the mechanical characteristics of morphological structures of 466 

vegetation having strong negative correlation with soil erosion in this study region (Zhu 467 

et al., 2015), these hydrological-trait morphological structures of vegetation could be  468 

key factors to affect the randomness of soil erosion. Just as in this study, the limited 469 

hydrological-trait morphological structures—such as relative smaller canopy structure, 470 

thinner thickness of litter layer, and shallower root system distribution in soil layer of 471 

T3—more significantly restricted its hydrological functions on intercepting rainfall as 472 

well as on conserving overland flow than that of T1 and T2 with obvious canopy 473 

structure and thicker litter respectively. As a result, these differences of morphological 474 

structures finally lead to the different stochasticity of runoff and sediment in T1 to T3. 475 

 476 

Figure 7 477 

Table 4 478 

 479 

4.3 Assessment of stochasticity prediction modellings 480 

PMFs of binomial and Poisson are effective probabilistic modellings to predict the 481 

stochasticity of soil erosion in restoration vegetation types in semi-arid environment. 482 
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The binomial and Poisson distribution functions were extensively applied on analyzing 483 

the stochastic hydrological phenomenon in natural condition Eagleson (1978). In the 484 

OCIRS-Bayes analysis framework, R and S events were both subsets of sample space 485 

composed by I events, therefore, the stochasticity of R and S have close connection 486 

with the stochastic signals of I events. In this study, the PMFs of binomial and Poisson 487 

indicates relative good predication about probabilistic distribution of soil erosion in all 488 

restoration vegetation types over five rainy seasons, however, with the ongoing 489 

experiment (supposing the monitoring of soil erosion last for 10 rainy seasons’ for 490 

instance), whether these two PMFs would still have stable and consistent well-491 

prediction about the stochasticity of soil erosion in T1 to T3, which could be an 492 

interesting and important assessment of the two PMFs. Based on above assumption, we 493 

compared the temporal effects of prediction in the two PMFs, and employed MLE and 494 

UMVUE (Robert et al., 2013) which are most important point estimation methods to 495 

make parameter analysis on PMFs of binomial and Poisson. The parameters 𝑝𝑅 , 𝑝𝑆, 𝜆𝑆 496 

and 𝜆𝑅 are deduced from experimental data, and contain all stochasticity information 497 

about R and S occurring in different restoration vegetation types. Specifically, take the 498 

stochasticity of R event for instance, we defined X𝑖 as the number of times of R event 499 

occurrence in a specific restoration vegetation in i th rainy season. Therefore, in this 500 

study, five independent and identical (iid) random variables have the same and mutually 501 

independent PMFs of binomial or Poisson, which are simply expressed as follow:  502 

X1, X2, … , X5
𝑖𝑖𝑑
→  𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑅) or X1, X2, … , X5

𝑖𝑖𝑑
→  𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑅)                        (16)  503 

Supposing the monitoring of soil erosion are continued to be conducted infinitely, then 504 
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the numbers of corresponding I events (n) and rainy seasons (i) would approach infinity 505 

(n, i→∞). (16) would be transformed as follow: 506 

X1, X2, … , X𝑖
𝑖𝑖𝑑
→ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝) or X1, X2, … , X𝑖

𝑖𝑖𝑑
→ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆)                                (17) 507 

In the (17), 𝑝  and 𝜆  are two population parameters representing the whole 508 

randomness information of R events under longer monitoring period with i rainy 509 

seasons. The real 𝑝 or 𝜆 is unknown, but, theoretically, they can be estimated by 510 

searching for the best reasonable population estimators �̂� or �̂� through MLE and 511 

UMVUE methods. During the estimator searching processes, appendix B proved that 512 

the best estimator �̂� in Binomial PMF is the unbiasedness and consistency of the MLE 513 

of 𝑝. And appendix C, however, proved that the best estimator �̂� in Poisson PMF is 514 

not only the unbiasedness and consistency of the MLE of 𝜆, but also the UMVUE of 515 

MLE. Consequently, comparing the two appendices, the best estimator �̂� implies that 516 

the Poisson PMF would be more beneficial for predicting the stochasticity of R and S 517 

events in different restoration vegetation types over long-term observation periods than 518 

that of Binomial PMF. 519 

Besides having better prediction about stochasticity of soil erosion at larger temporal 520 

scale, the Poisson PMF could also be fit for predicting the stochasticity of S event in 521 

the closed-design plot system. As Boix-Fayos et al, (2006) mentioned, the closed 522 

runoff-plot was not fit for long-term soil erosion monitoring, because it forms an 523 

obstruction to prevent the transportable material from entering the close monitoring 524 

system. With the ongoing monitoring at longer temporal scale, the transport-limited 525 

erosion pattern could gradually transform into detachment-limited pattern in the closed-526 
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plot (Boix-Fayos et al., 2007;Cammerraat, 2002). This probably leads to the sediment 527 

transformation becoming more and more difficult to generate, and finally reduces the 528 

probability of S events under the same precipitation condition. And fortunately, the 529 

parameters in Poisson PMF at larger temporal scale could successfully express the 530 

decreasing of probability of S event in closed-plot system. Because, in order to 531 

satisfying the fact that 𝜆 = 𝑛𝑝 in Poisson PMF is an unknown constant, when the 532 

numbers of times of I events (n) approach infinity, the probability (𝑝) of R or S events 533 

generation have to approach to zero, Actually, above inference coincides with the 534 

assuming situation for sediment transformation in closed plot system at long temporal 535 

scale (Boix-Fayos et al., 2006), which further proves that Poisson PMF could be a 536 

reliable prediction model for soil erosion. However, affected by the globe climate 537 

change, the occurring frequency of extreme weather condition probably increase. Under 538 

that background, the stochastic signals of increasing extreme I events could inevitably 539 

be transmitted into the stochasticity of soil erosion in the further. Consequently, it is 540 

necessary to furtherly focus on the disturbance of rare event with extreme amount or 541 

energy on the soil-plant systems under a changing environment.  542 

 543 

5.  Conclusion  544 

In this study, we applied stochastic approach to analyze the effects of restoration 545 

vegetation types on the stochasticity of runoff and sediment in the Loess Plateau of 546 

China, and draw the following conclusions:  547 

(1) OCIRS-Bayes framework is an innovative analysis system which not only quantify 548 
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the stochasticity of environment in terms of random event pattern, but also 549 

characterize the interactive relationship between rainfall and soil erosion by means 550 

of probability theory. 551 

(2) The difference of morphological structures in restoration vegetation types is the 552 

source of different stochasticity of soil erosion in T1 to T3 under same rainfall 553 

condition. Larger canopy, thicker litter layer and denser root distribution could 554 

more effectively affect the transmission of stochastic signal of rainfall into soil 555 

erosion.  556 

(3) Both of binomial and Poisson PMFs could well predict the probability distribution 557 

of numbers of times runoff and sediment events in T1 to T3, however, Poisson 558 

PFM could be more fit for predicting stochasticity of soil erosion at larger temporal 559 

scales 560 

This study provide a new analysis framework to describe the soil erosion property, 561 

which could be meaningful to researchers and policy makers to evaluate the efficacy of 562 

soil control practices and their ecosystem service in a semi-arid environment.  563 

 564 

 565 

Appendix A.  The transformation from binominal to Poisson PMF 566 

Let 𝑝 =
𝜆

𝑛
, then: 567 

𝑝𝑚𝑓𝑋𝑏𝑖𝑛(𝑥) = (
𝑛
𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥 =

𝑛!

𝑥!(𝑛−𝑥)!
∙ (
𝜆

𝑛
)
𝑥

∙ (1 −
𝜆

𝑛
)
𝑛−𝑥

  568 

          =
𝜆!

𝑥!
∙
𝑛(𝑛−1)(𝑛−2)⋯1

(𝑛−𝑥)(𝑛−𝑥−1)⋯1
∙
1

𝑛𝑥
∙ (1 −

𝜆

𝑛
)
𝑛−𝑥

  569 

          =
𝜆!

𝑥!
∙ 1 ∙ (1 −

1

𝑛
) ∙ (1 −

2

𝑛
)⋯(1 −

𝑥−1

𝑛
) ∙ (1 +

−𝜆

𝑛
)
𝑛

∙ (1 −
𝜆

𝑛
)
−𝑥

       (A1) 570 
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In equation (A1), when 𝑛 → ∞, and 𝑥, 𝜆 is finite and constant, then  571 

𝑙𝑖𝑚
𝑛→∞

(1 −
1

𝑛
) = ⋯ = 𝑙𝑖𝑚

𝑛→∞
(1 −

𝑥 − 1

𝑛
) = 𝑙𝑖𝑚

𝑛→∞
(1 −

𝜆

𝑛
)
−𝑥

= 1                                   (A2) 572 

And  573 

𝑙𝑖𝑚
𝑛→∞

(1 +
−𝜆

𝑛
)
𝑛

= 𝑒−𝜆                                                                                                          (A3) 574 

And according to equation (A2) and (A3), the equation (A1) can be transformed as: 575 

𝑙𝑖𝑚
𝑛→∞

[
𝑛!

𝑥! (𝑛 − 𝑥)!
∙ (
𝜆

𝑛
)
𝑥

∙ (1 −
𝜆

𝑛
)
𝑛−𝑥

] =
𝜆𝑥𝑒−𝜆

𝑥!
   𝑥 = 0,1,2, …                                 (A4) 576 

or 577 

𝑝𝑚𝑓𝑋𝑏𝑖𝑛(𝑥)
𝑛→∞
→   

𝜆𝑥𝑒−𝜆

𝑥!
= 𝑝𝑚𝑓𝑋𝑝𝑜𝑖(𝑥)                                                                             (A5) 578 

 579 

Appendix B.  Parameter estimation of 𝒑 in Poisson PMF 580 

(1)  Derivatization of the MLE �̂� 581 

Let the random sample X1, X2, … , X𝑖
𝑖𝑖𝑑
→ 𝑝𝑚𝑓𝑋𝑏𝑖𝑛(𝑝) and assume the binomial 582 

distribution as:  583 

𝑃(X = 𝑥𝑖) = (
𝑚

𝑥𝑖
) 𝑝𝑥𝑖(1 − 𝑝)𝑚−𝑥𝑖                                                                                      (B1) 584 

The likelihood function 𝐿(𝑝) is joint binomial PDF with parameter 𝑝 as follow: 585 

𝐿(𝑝) = 𝑓𝑋(X1, … , X𝑛 , 𝑝) =∏(
𝑚

𝑥𝑖
)𝑝∑ X𝑖

𝑛
𝑖=1 (1 − 𝑝)(𝑚𝑛−∑ X𝑖)

𝑛
𝑖=1

𝑛

𝑖=1

                              (B2)  586 

By taking logs on both side of equation (B2):  587 

𝑙𝑛𝐿(𝑝) = 𝑙𝑛 (∏(
𝑚

𝑥𝑖
)

𝑛

𝑖=1

) +∑ X𝑖
𝑛

𝑖=1
𝑙𝑛 𝑝 + (𝑚𝑛 −∑ X𝑖

𝑛

𝑖=1
) 𝑙𝑛(1 − 𝑝)                (B3) 588 

And differentiating with respect to 𝑝 in 𝑙𝑛𝐿(𝑃) and let the result be zero: 589 

∂𝑙𝑛𝐿(𝑝)

𝜕𝑝
=
∑ X𝑖
𝑛
𝑖=1

𝑝
−
(𝑚𝑛 − ∑ X𝑖

𝑛
𝑖=1 )

(1 − 𝑝)
= 0                                                                      (B4) 590 

Solution �̂� =
∑ X𝑖
𝑛
𝑖=1

𝑚𝑛
, let 𝑚 = 𝑛,⟹ �̂� =

X̅

𝑛
 591 
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Therefore, �̂� =
X̅

𝑛
 is the MLE of population parameter 𝑝 in binomial PMF model. 592 

 593 

(2)  Discussion of the unbiasedness and consistency of �̂�    594 

Let 𝐸𝑝(�̂�) be the expectation of M.L.E �̂� when population parameter 𝑝 is true in 595 

random sample which is X1, X2, … , X𝑖
𝑖𝑖𝑑
→ 𝑝𝑚𝑓𝑋𝑏𝑖𝑛(𝑝), then  596 

𝐸𝑝(�̂�) = 𝐸𝑃(X̅ 𝑛⁄ ) =
1

𝑛2
∑ 𝐸𝑃(X𝑖)

𝑛

𝑖=1
=
1

𝑛2
𝑛2𝑝 = 𝑝                                                   (B5) 597 

Which proved that MLE �̂� =
X̅

𝑛
 is a unbiased estimator for 𝑝. And furthermore then 598 

let 𝑉𝑎𝑟𝑝(�̂�) be the variance of �̂� when population 𝑝 is true.  599 

𝑉𝑎𝑟𝑝(�̂�) = 𝑉𝑎𝑟𝑝 (∑ X𝑖
𝑛

𝑖=1
𝑛2⁄ ) =

1

𝑛4
∑ 𝑉𝑎𝑟𝑝(X𝑖) =

𝑝(1 − 𝑝)

𝑛2

𝑛

𝑖=1
                         (B6) 600 

As the n approaches to infinite: 601 

𝑙𝑖𝑚
𝑛→∞

𝑉𝑎𝑟𝑝(�̂�) = 𝑙𝑖𝑚
𝑛→∞

(
𝑝(1 − 𝑝)

𝑛2
) = 0                                                                               (B7) 602 

Equation (B5)~(B7) satisfied the theme of weak law of larger number, which lead the 603 

�̂� =
X̅

𝑛
 is probabilistic converge to population parameter 𝑝: 604 

𝑙𝑖𝑚
𝑛→∞

𝑃(|�̂� − 𝑝| ≥ 𝜀) = 0, for all 𝜀 > 0                                                                              (B8) 605 

Consequently, the unbiased MLE �̂� =
X̅

𝑛
 is consistent for 𝑝. 606 

 607 

Appendix C.   Parameter estimation of 𝝀 in Poisson PMF 608 

(1)  Derivatization of the MLE �̂� 609 

Let the random sample X1, X2, … , X𝑖
𝑖𝑖𝑑
→ 𝑝𝑚𝑓𝑋𝑝𝑜𝑖(𝜆) , and assume the poisson 610 

distribution as:  611 

𝑝𝑚𝑓X𝑝𝑜𝑖(𝑥𝑖) =
𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!
                                                                                                         (C1) 612 
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The likelihood function 𝐿(𝜆) is joint PDF with parameter 𝜆 as follow: 613 

𝐿(𝜆) = 𝑓𝑋(X1, … , X𝑛, 𝜆) = 𝑓(X1, 𝜆) ×⋅⋅⋅× 𝑓(X𝑛, 𝜆) =∏
𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!

𝑛

𝑖=1

                            (C2) 614 

Taking logs on 𝐿(𝜆) in equation (B4) and differentiating logarithm function with 615 

respect to 𝜆: 616 

∂𝑙𝑛𝐿(𝜆)

𝜕𝜆
=
∂(∏

𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!
𝑛
𝑖=1 )

𝜕𝜆
= −𝑛

𝜆∑ X𝑖
𝑛
𝑖=1

(𝑥1𝑥2 ∙∙∙ 𝑥𝑛)!
𝑒−𝑛𝜆 +

∑ X𝑖𝜆
(−1+∑ X𝑖

𝑛
𝑖=1 )𝑛

𝑖=1

(𝑥1𝑥2 ∙∙∙ 𝑥𝑛)!
         (C3) 617 

Let the equation (C3) equal to zero, and has solution: 618 

�̂� =
1

𝑛
∑ X𝑖

𝑛

𝑖=1
= X̅                                                                                                                (C4) 619 

Therefore, �̂� = X̅ is the MLE of population parameter 𝜆 in Poisson PMF model. 620 

 621 

(2)  Discussion of the unbiasedness and consistency of �̂�    622 

Let 𝐸𝜆(�̂�) be the expectation of MLE �̂� when population parameter 𝜆 is true in 623 

random sample X1, X2, … , X𝑖
𝑖𝑖𝑑
→ 𝑝𝑚𝑓X𝑝𝑜𝑖(𝜆), then:  624 

𝐸𝜆(�̂�) = 𝐸𝜆(X̅) =
1

𝑛2
∑ 𝐸𝜆(X𝑖)

𝑛

𝑖=1
=
1

𝑛
𝑛𝜆 = 𝜆                                                              (C5) 625 

which proved that MLE �̂� = X̅ is a unbiased estimator for 𝜆. Meanwhile, let 𝑉𝑎𝑟𝜆(�̂�) 626 

be the variance of MLE �̂� when population parameter 𝜆 is true  627 

𝑉𝑎𝑟𝜆(�̂�) = 𝑉𝑎𝑟𝜆(X̅) = 𝑉𝑎𝑟𝜆 (∑ X𝑖
𝑛

𝑖=1
𝑛2⁄ ) =

1

𝑛4
∑ 𝑉𝑎𝑟𝜆(X𝑖) =

𝜆

𝑛

𝑛

𝑖=1
                  (C6) 628 

And  629 

𝑙𝑖𝑚
𝑛→∞

𝑉𝑎𝑟𝜆(�̂�) = 𝑙𝑖𝑚
𝑛→∞

(
𝜆

𝑛
) = 0                                                                                              (C7) 630 

According to the weak law of large number theme, equation (B7, B8, C1) lead that 631 

unbiased MLE �̂� = X̅ is probabilistic converge to 𝜆: 632 

𝑙𝑖𝑚
𝑛→∞

𝑃(|�̂� − 𝜆| ≥ 𝜀) = 0, for all 𝜀 > 0                                                                               (C8)  633 
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Therefore, MLE �̂� = X̅ is consistent for population parameter 𝜆.  634 

 635 

(3)  Determination of UMVUE �̂� of population parameter 636 

Firstly, MLE �̂� = X̅  is an unbiased estimator of parameter 𝜆  which is the 637 

precondition of UMVUE determination. Secondly, by using Cramer-Rao lower bound 638 

to check whether the unbiased MLE was UMVUE or not. Then we have: 639 

𝑙𝑛𝑓𝑋(𝑋, 𝜆) = −𝑙𝑛𝑥! + 𝑥𝑙𝑛 𝜆 −  𝜆                                                                                       (C9) 640 

𝜕(𝑙𝑛𝑓𝑋(𝑋, 𝜆))

𝜕𝜆
=
𝑥

𝜆
− 1                                                                                                       (C10) 641 

And  642 

𝜕2𝑙𝑛𝑓𝑋(𝑋, 𝜆)

𝜕𝜆2
=
𝜕(
𝑥
𝜆
− 1)

𝜆
= −

𝑥

𝜆2
                                                                                   (C11) 643 

Accordingly the expectation of equation (C11) when the population parameter 𝜆 is 644 

true: 645 

𝐸𝜆 [
𝜕2𝑙𝑛𝑓𝑋(𝑋, 𝜆)

𝜕𝜆2
] = 𝐸𝜆 (−

𝑋

𝜆2
) = −

1

𝜆2
𝐸𝜆(𝑋) = −

𝜆

𝜆2
= −

1

𝜆
                                  (C12) 646 

So the Cramer-Rao lower bound (CRLB) is  647 

CRLB =
1

−𝑛𝐸𝜆 [
𝜕2𝑙𝑛𝑓𝑋(𝑋, 𝜆)

𝜕𝜆2
]
=

1

−𝑛 ∙ (−
1
𝜆
)
=
𝜆

𝑛
= 𝑉𝑎𝑟𝜆(�̂�) = 𝑉𝑎𝑟𝜆(X̅)             (C13) 648 

Consequently, MLE �̂� = X̅ is UMVUE of population parameter 𝜆. 649 

 650 

 651 

 652 

 653 

 654 
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Figure captions 655 

 656 

Figure 1  657 

Description of the study area, (a) Location of the Yangjuangou Catchment; (b) 658 

restoration vegetation types at the runoff-plot scale, from left to right: Armeniaca 659 

sibirica (T1), Spiraea pubescens (T2), and Artemisia copria (T3); (c) field saturated 660 

conductivity measurement using Model 2800 K1 Guelph Permeameter; (d) a 1 m2 661 

quadrat to measure vegetation coverage   662 

 663 

Figure 2 664 

Construction process of OCIRS-Bayes analysis framework, (a) flow chart of 665 

confirming process of all elements in OCIRS-Bayes system; (b) Venn diagram of the 666 

relationships of all elements in OCIRS-Bayes system; (c) result of hierarchical cluster 667 

analysis of 130 individual rainfall events 668 

 669 

Figure 3 670 

The probability distributions of four rainfall event types at month and seasonal scales 671 

over five rainy seasons   672 

 673 

Figure 4 674 

The probability distributions of soil erosion in three restoration vegetation types at 675 

month and seasonal scales over five rainy seasons, the Arabic numbers and letter “T” 676 

on the abscissa in each plot represent the month and total reason respectively, the same 677 

as follow figures 678 

 679 

Figure 5  680 

The distribution of probabilistic contribution of four rainfall event types on one 681 

stochastic soil erosion in three restoration vegetation types at month and seasonal scales 682 

over five rainy seasons 683 

 684 

Figure 6 685 

The comparison the prediction of stochasticity of soil erosion by binomial and Poisson 686 

PMFs and observed frequency of numbers of times of soil erosion event in three 687 

restoration vegetation types, Exp_B and Exp_P means the expected values in binomial 688 

and Poisson PMF respectively, and histogram represents observed value. 689 

 690 

Figure 7 691 

Morphological structure properties of thee restoration vegetation types including litter 692 

layer, root system distribution. The diameter and depth of samples which were indicted 693 

by the dashed line are approximately 10 cm and 30 cm respectively 694 

 695 

 696 
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Tables  866 

 867 

Table 1   Basic properties of soil, vegetation and erosion in different restoration vegetation types   868 

Basic properties of different 

vegetation types 

hN Restoration vegetation types 

Armeniaca sibirica 

Type 1 

Spiraea pubescens 

Type 2 

Artemisia copria 

Type3 

Topography property     

Slope aspect  9 southwest southwest Southwest 

Slope gradation (%) 9 ≈26.8 ≈26.8 ≈26.8 

Slope size for each (m) 9 3×10 3×10 3×10 

Soil property     

aDBD (g cm-3) 30 1.28±0.08 1.16±0.12 1.23±0.10 

Clay (%) 30 11.07±2.43 11.98±3.05 9.54±1.48 

Silt (%) 30 26.11±1.50 25.24±3.84 26.72±2.87 

Sand (%) 30 62.82±0.94 62.78±4.51 63.74±3.24 

bTexture type  Sandy loam Sandy loam Sandy loam 

cKfc (cm min-1) 20 0.46±0.82(a) 2.22±0.66(b) 0.50±0.60(a) 

dSOM (%) 30 1.28±0.63(a) 0.98±0.15(b) 0.90±0.09(b) 

Vegetation property     

Restoration years 9 20 20 20 

Crown diameters (cm) 27 211.6±15.4(c) 80.5±4.5(b) 64.1±6.3(a) 

Litter layer (cm) 30 1.2±0.3(a) 3.4±1.8(b) 1.8±0.5(a) 

Height (cm) 27 256.3±11.1(c) 128.3±8.3(b) 61.8±1.1(a) 

LAI 27 × 2.31 1.78 

eAve. Coverage (%) 27 85 90 90 

Rainfall/Erosion property     

Times of rainfall events   130  

Times of runoff events  30/30/30 45/45/45 45/45/45 

Times of sediment events  13/13/13 19/19/19 32/32/32 

fAve. runoff depth (cm)   0.012(a) 0.014(a) 0.083(b) 

gAve. sediment amount (g)  5.8(a) 6.8(a) 25.7(b) 

a: dry bulk density; b: texture type is determined by textural triangle method based on USDA; 

c: field saturated hydraulic conductivity, and all the values with same letter in each row indicates 

non-significant difference at α=0.05 which is the same as follow rows; d: soil organic matter; e: 

average coverage of three restoration vegetation types over five rainy seasons; f: average runoff 

depth in restoration types over rainy seasons; g: average sediment yield in restoration types over 

rainy seasons; h: sample number. 
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Table 4   Correlation analysis between vegetation coverage and stochasticity of runoff and 880 

sediment events 881 
aVegetation 

types 

Runoff Events Sediment Events 

Probability Expectation Variation Probability Expectation Variation 

 IA Type 

Type 1 NA NA NA NA NA NA 

Type 2 -0.61 -0.57 -0.63 NA NA NA 

Type 3 -0.32 -0.50 -0.18 NA NA NA 

 IB Type   

Type 1 -0.74* -0.48 -0.82* NA NA NA 

Type 2 -0.51 -0.94* -0.78* -0.70* -0.60 -0.54 

Type 3 -0.88* -0.80* 0.20 -0.81* -0.63 -0.41 

 IC Type   

Type 1 NA NA NA NA NA NA 

Type 2 NA NA NA NA NA NA 

Type 3 NA NA NA NA NA NA 

 All Types  

Type 1 -0.28 -0.32 -0.36 NA NA NA 

Type 2 -0.13 -0.61 b-0.77* -0.33 -0.58 -0.42 

Type 3 -0.09 -0.36 -0.23 -0.36 -0.69 -0.33 

a: vegetation coverage; b: * means significant at α=0.05 

 882 
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Figures 905 

 906 

 907 

Figure 1  Description of the study area, (a) Location of the Yangjuangou Catchment; 908 

(b) restoration vegetation types at the runoff-plot scale, from left to right: Armeniaca 909 

sibirica (T1), Spiraea pubescens (T2), and Artemisia copria (T3); (c) field saturated 910 

conductivity measurement using Model 2800 K1 Guelph Permeameter; (d) a 1 m2 911 

quadrat to measure vegetation coverage   912 
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 922 

Figure 2  Construction process of OCIRS-Bayes analysis framework, (a) flow chart of 923 

confirming process of all elements in OCIRS-Bayes system; (b) Venn diagram of the 924 

relationships of all elements in OCIRS-Bayes system; (c) result of hierarchical cluster 925 

analysis of 130 individual rainfall events 926 
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 931 

Figure 3  The probability distributions of four rainfall event types at month and 932 

seasonal scales over five rainy seasons   933 
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45 
 

 949 
Figure 6  The comparison the prediction of stochasticity of soil erosion by binomial 950 

and Poisson PMFs and observed frequency of numbers of times of soil erosion event in 951 

three restoration vegetation types, Exp_B and Exp_P means the expected values in 952 

binomial and Poisson PMF respectively, and histogram represents observed value. 953 
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 963 

Figure 7  Morphological structure properties of thee restoration vegetation types 964 

including litter layer, root system distribution. The diameter and depth of samples which 965 

were indicted by the dashed line are approximately 10 cm and 30 cm respectively 966 
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